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Construction of Codes: Introduction

Fn
q: vector space over a finite field Fq. Code: C ⊆ Fn

q.

〈−, −〉: usual Euclidean inner product in Fn
q. That is

〈x, y〉 = x1y1 + · · ·+ xnyn ∈ Fq, ∀ x, y ∈ Fn
q.

Dual code: C⊥ :=
{
x ∈ Fn

q | 〈c, x〉 = 0, ∀ c ∈ C
}

.

Self-orthogonal: C ⊆ C⊥. Self-dual: C = C⊥.

Minimum Hamming distance: dH(C ) = min
c6=c′∈C

dH(c, c′).

Minimum Hamming weight: wH(C ) = min
0 6=c∈C

wH(c).

C is linear (C ≤ Fn
q) ⇒ dH(C ) = wH(C ).
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Construction of Codes: Plotkin’s Construction

There are many known methods for constructing longer codes from
shorter ones.

Plotkin’s (u |u + v)-construction, where Ci ⊆ Fn
q, i = 1, 2 be codes

over Fq and u ∈ C1, v ∈ C2, gives a (2n, |C1| · |C2|,min{2d1, d2})
code.

This construction can be rewritten as the following form:

[C1,C2]

(
1 1
0 1

)
=

{
(u, v)

(
1 1
0 1

) ∣∣∣ u ∈ C1, v ∈ C2

}
.
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Construction of Codes: Another Construction

The (u + v + w | 2u + v |u)-construction gives a code with
parameters

(3n, |C1| · |C2| · |C3|,min{3d1, 2d2, d3}),

where u ∈ C1, v ∈ C2,w ∈ C3.

The (u + v + w | 2u + v |u)-construction can be written as follows.

[C1,C2,C3]

1 2 1
1 1 0
1 0 0

 =

(c1, c2, c3)

1 2 1
1 1 0
1 0 0

 ∣∣∣∣ cj ∈ Cj

.
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Construction of Codes: Turyn’s Construction

Turyn’s (a + x |b + x | a + b + x)-construction

C = [C1,C1,C2]T =

(a,b, x)

1 0 1
0 1 1
1 1 1

 ∣∣∣∣ a,b ∈ C1, x ∈ C2

.

Forney gave an estimation about Hamming distance bound for this
construction:

min{dH(C1 ∩ C2), 2dH(C1), 3dH(C2)} ≥

dH(C ) ≥ min{dH(C1 ∩ C2), 2dH(C1), 3dH(C1 + C2)}.

——————————–
G. D. Forney, Coset codes II: binary lattices, IEEE Trans. Inform.
Theory, 34 (1988), 1152–1187.
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Construction of Codes: Matrix Product Codes

Blackmore and Norton (2001) generalized these constructions to a
more general setting.

Let Cj be (n,Mj) codes over Fq, 1 ≤ j ≤ m,
A be an m × l matrix over Fq.
A matrix product code (MPC) C = [C1, · · · ,Cm]A over Fq is the
set of all the matrix products (as codewords)

(c1, · · · , cm)A =

c11a11 + · · ·+ c1mam1 · · · c11a1l + · · ·+ c1maml

· · · · · · · · ·
cn1a11 + · · ·+ cnmam1 · · · cn1a1l + · · ·+ cnmaml

 ,

where cj ’s are written as n × 1 column vectors. That is:

C = [C1, · · · ,Cm]A = {(c1, · · · , cm)A | cj ∈ Cj}.

How to determine the parameters of the MPCs?
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Construction of Codes: NSC Matrix
Consider the following three matrices:

A =

(
1 1
0 1

)
,B =

1 2 1
1 1 0
1 0 0

 ,T =

1 0 1
0 1 1
1 1 1

 .

Blackmore and Norton introduced the following concepts.

An m × l matrix is a non-singular by columns matrix (NSC) if for
any 1 ≤ k ≤ m, and any 1 ≤ j1 < · · · < jk ≤ l , the determinant of
the following submatrix is nonzero in Fq:

det A(j1, · · · , jk) = det

a1j1 · · · a1jk
· · · · · · · · ·
akj1 · · · akjk

 6= 0.

A matrix is called triangular if it is a column permutation of an
upper-triangular matrix.
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Construction of Codes: Distance Bound

Theorem 1.1 (Blackmore-Norton)

Let Ck be (n,Mk , dH(Ck)) codes over Fq for 1 ≤ k ≤ m.

(i) If A is an m × l NSC matrix over Fq. Then C is a
(nl ,

∏m
k=1 Mk , dH(C )) code with the minimum distance

dH(C ) ≥ min{(l − k + 1)dH(Ck) | 1 ≤ k ≤ m}.

(ii) If A is an m ×m (l = m) NSC square matrix. Then

dH(C⊥) ≥ min
{

1 · dH(C⊥1 ), 2 · dH(C⊥2 ), · · · , m · dH(C⊥m )
}

.

Furthermore, if A is triangular then the two equalities above hold.

——————————–
T. Blackmore and G. H. Norton, Matrix-product codes over Fq,
Appl. Algebra Engrg. Comm. Comput., 12 (2001), 477–500.
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Construction of Codes: Distance Bound-Continued

Theorem 1.2 (van Asch)

Let R be a finite chain ring. Let Ck be (n,Mk , dhom(Ck)) codes
over R for 1 ≤ k ≤ m.
(i) If A is an m × l NSC matrix over R. Then C is a

(nl ,
∏m

j=k Mk , dhom(C )) code with the minimum homogeneous
distance

dhom(C ) ≥ min{(l − k + 1)dhom(Ck) | 1 ≤ k ≤ m}.

(ii) If A is an m ×m (l = m) NSC square matrix. Then

dhom(C⊥) ≥ min
{

1 ·dhom(C⊥1 ), 2 ·dhom(C⊥2 ), · · · , m ·dhom(C⊥m )
}

.

Furthermore, if A is triangular then the two equalities above hold.

——————————–
B. van Asch, Matrix-product codes over finite chain rings, Appl.
Algebra Engrg. Comm. Comput., 19 (2008), 39–49.
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What Are We Going to Do?

I Discuss the properties of matrix product codes over finite
commutative Frobenius rings.

I Bound the minimum distance of matrix product codes
constructed with several types of matrices in different ways.

I Explicitly describe the dual codes of matrix product codes in
terms of matrix product codes again.
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Matrices over Rings: Notations

R, a finite commutative ring with identity 1 6= 0. Writing the
identity element 1 of the ring R as the sum of the primitive
idempotents of R, we obtain an isomorphism

R
∼=−→
ϕ

R1 ⊕ · · · ⊕ Rs , r 7−→ (r (1), · · · , r (s)), (2.1)

where R1, · · · , Rs are local commutative rings.

With the isomorphism (2.1), in the following we usually identify R
with R1 ⊕ · · · ⊕ Rs and just write r = (r (1), · · · , r (s)).
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Matrices over Rings: Frobenius Rings

R is called Frobenius if (C⊥)⊥ = C for any submodule C of any
free R-module Rn.

I R is Frobenius ⇒ |C⊥||C | = |R|n for any submodule C of Rn.

I The reason that finite Frobenius rings are suitable for coding
alphabets is that two fundamental theorems (Macwilliams identity
and Macwilliams extension theorem) hold (Jay Wood, 1999).

I With the isomorphism (2.1), R is Frobenius ⇔ every local
component Ri is Frobenius.
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Matrices over Rings: Notations-Continued

A matrix A = (aij)m×l ∈ Mm×l(R) can be written as

A =
(

A(1), · · · ,A(s)
)
, A(k) =

(
a
(k)
ij

)
m×l
∈ Mm×l(Rk), 1 ≤ k ≤ s,

(2.2)
where the matrix addition and product are the coordinate-wise
addition and product, respectively.

Written any element a = (a1, · · · , an)T ∈ Rn as a column vector.
With the identification in (2.1), we can write

Rn = Rn
1 ⊕ · · · ⊕ Rn

s , a =
(
a(1), · · · , a(s)

)
,

where a(k) = (a
(k)
1 , · · · , a

(k)
n )T is a column vector in Rn

k .
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Matrices over Rings: Linear Independence

For any integer t ≥ 1, let ai = (ai1, · · · , ain) ∈ Rn, i = 1, · · · , t.

The vectors a1, · · · , at are said to be linearly dependent if there
exists (b1, · · · , bt) in the set difference Rt \ {0} such that
b1a1 + · · ·+ btat = 0; otherwise, a1, · · · , at are said to be linearly
independent.

The vectors a1, · · · , at ∈ Rn are linearly independent if and only if,

for all k with 1 ≤ k ≤ s, the vectors a
(k)
1 , · · · , a(k)t ∈ Rn

k are
linearly independent.

If an R-submodule of Rn is generated by vectors a1, · · · , at which
are linearly independent, then it is a free R-module of rank t and
we say that a1, · · · , at form a basis of the free submodule.

H. Liu (CCNU), Matrix Product Codes over Finite Commutative Rings 15 / 45



Construction of Codes Matrices over Rings Matrix Product Codes SFRR Matrices Two-way (m’) Matrices

Matrices over Rings: Linear Independence

For any integer t ≥ 1, let ai = (ai1, · · · , ain) ∈ Rn, i = 1, · · · , t.

The vectors a1, · · · , at are said to be linearly dependent if there
exists (b1, · · · , bt) in the set difference Rt \ {0} such that
b1a1 + · · ·+ btat = 0; otherwise, a1, · · · , at are said to be linearly
independent.

The vectors a1, · · · , at ∈ Rn are linearly independent if and only if,

for all k with 1 ≤ k ≤ s, the vectors a
(k)
1 , · · · , a(k)t ∈ Rn

k are
linearly independent.

If an R-submodule of Rn is generated by vectors a1, · · · , at which
are linearly independent, then it is a free R-module of rank t and
we say that a1, · · · , at form a basis of the free submodule.

H. Liu (CCNU), Matrix Product Codes over Finite Commutative Rings 15 / 45



Construction of Codes Matrices over Rings Matrix Product Codes SFRR Matrices Two-way (m’) Matrices

Matrices over Rings: Linear Independence

For any integer t ≥ 1, let ai = (ai1, · · · , ain) ∈ Rn, i = 1, · · · , t.

The vectors a1, · · · , at are said to be linearly dependent if there
exists (b1, · · · , bt) in the set difference Rt \ {0} such that
b1a1 + · · ·+ btat = 0; otherwise, a1, · · · , at are said to be linearly
independent.

The vectors a1, · · · , at ∈ Rn are linearly independent if and only if,

for all k with 1 ≤ k ≤ s, the vectors a
(k)
1 , · · · , a(k)t ∈ Rn

k are
linearly independent.

If an R-submodule of Rn is generated by vectors a1, · · · , at which
are linearly independent, then it is a free R-module of rank t and
we say that a1, · · · , at form a basis of the free submodule.

H. Liu (CCNU), Matrix Product Codes over Finite Commutative Rings 15 / 45



Construction of Codes Matrices over Rings Matrix Product Codes SFRR Matrices Two-way (m’) Matrices

Matrices over Rings: Definitions

Let A = (aij)m×l be a matrix over R.

I If the rows of A are linearly independent, then we say that A is
a full-row-rank (FRR) matrix.

I If there is an l ×m matrix B over R such that AB = I , then
we say that A is right-invertible and B is a right inverse of A.

I If m = l and the determinant det A is a unit of R, then we say
that A is non-singular.

I If, for every t with 1 ≤ t ≤ m, any t × t submatrix of the first
(resp., last) t rows of A is non-singular, then we say that A is
non-singular by columns (resp., reversely non-singular by columns).
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Matrices over Rings: Solutions of LES

Proposition 2.1

Let A ∈ Mm×l(R) be FRR and let X = (x1, · · · , xl)
T , where xi ’s

are variables. Then the set of solutions of the linear equation
system (LES) AX = 0 is a free submodule in R l of rank l −m and
we have an FRR (l −m)× l matrix G over R whose rows form a
basis of this free submodule.

Idea of proof:
I R is local ⇒ there exists an invertible l × l matrix P over R
such that AP = ( I | 0 )m×l . Write AX = 0 as (AP)(P−1X ) = 0.

I From local to general case.
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Matrix Product Codes: Notations

A = (aij)m×l ∈ Mm×l(R). For any index 1 ≤ k ≤ m.

UA(k): linear code over R of length l generated by the ith rows of
A, for i = 1, 2, · · · , k .

LA(k): linear code over R of length l generated by the ith rows of
A, for i = k , k + 1, · · · ,m.

UA(m) = LA(1): linear code over R of length l generated by all the
rows of A. Convention: UA(0) = LA(m + 1) = {0}.

Using the notation above, the set of solutions of the linear equation
system AX = 0 is the dual code LA(1)⊥ of the code LA(1).

If A is FRR then LA(1)⊥ = LG (1), where G is defined in Prop 2.1.
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Matrix Product Codes: Distance Bound

Cj : (n,Mj) codes over R( j = 1, · · · ,m) . A = (aij)m×l : FRR
matrix over R. Matrix product code

[C1, · · · ,Cm]A = {(c1, · · · , cm)A | c1 ∈ C1, · · · , cm ∈ Cm} . (3.1)

Theorem 3.1

Assume the notations given above. Let w be a weight on R. Then

C = [C1, · · · ,Cm]A is an
(

nl ,
∏m

j=1 Mj

)
code over R with

minimum distance dw (C ) satisfying

dw (C ) ≥ min
{

dH(Ck)dw

(
UA(k)

)
| k = 1, · · · ,m

}
, (3.2U)

dw (C ) ≥ min
{

dH(Ck)dw

(
LA(k)

)
| k = 1, · · · ,m

}
. (3.2L)
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Matrix Product Codes: Distance Bound-Continued

Idea of proof:

(i) A is FRR + Equation 3.1 ⇒ C is an
(
nl ,
∏m

j=1 Mj

)
code.

(ii) For any c 6= c′ ∈ C . Write cj − c′j = bj . There is an index k
such that bj = 0 for all j < k but bk 6= 0.

c− c′ = (0, · · · , 0,bk , · · · ,bm)A = (bk , · · · ,bm)

Ak
...

Am

 .

For each nonzero bik , the weight of the ith row of c− c′ is:

w(bikAk + bi ,k+1Ak+1 + · · ·+ bimAm) ≥ dw (LA(k)).

(iii) The proof of the second inequality is similar.
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Matrix Product Codes: Duals of MPCs

The following result describes the dual of a matrix product code
constructed with an FRR matrix.

Theorem 3.2

Let C1, · · · ,Cm be codes over a Frobenius ring R of length n, and
let A ∈ Mm×l(R) be FRR. Assume that B ∈ Ml×m(R) is a right
inverse of A and G ∈ M(l−m)×l(R) is a generator matrix of the

dual code LA(1)⊥ of LA(1). Set B̃ =
(
B |GT

)
. Then the dual

code of C = [C1, · · · ,Cm]A is

C⊥ = [ C⊥1 , · · · ,C⊥m , Rn, · · · ,Rn︸ ︷︷ ︸
l−m

]B̃T

= [C⊥1 , · · · ,C⊥m ]BT + Mn×(l−m)(R)G .

Note that here we don’t need A to be square.
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Matrix Product Codes: Duals-Continued

Idea of proof:

We can prove that B̃ =
(
B |GT

)
is invertible such that A is the

m × l submatrix of Ã = B̃−1 =

(
A

A′

)
. Then

C = [C1, · · · ,Cm]A = [C1, · · · ,Cm, 0, · · · , 0︸ ︷︷ ︸
l−m

]Ã.

Show that

[C⊥1 , · · · ,C⊥m , Rn, · · · ,Rn︸ ︷︷ ︸
l−m

]B̃T ⊆ C⊥.

R is Frobenius ⇒ |[C⊥1 , · · · ,C⊥m , Rn, · · · ,Rn︸ ︷︷ ︸
l−m

]B̃T | = |C⊥|.

H. Liu (CCNU), Matrix Product Codes over Finite Commutative Rings 22 / 45



Construction of Codes Matrices over Rings Matrix Product Codes SFRR Matrices Two-way (m’) Matrices

Matrix Product Codes: Duals-Continued

Idea of proof:
We can prove that B̃ =

(
B |GT

)
is invertible such that A is the

m × l submatrix of Ã = B̃−1 =
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SFRR Matrices: Singleton Bound

Let C be a nonzero code of length n over a finite commutative
ring R. The following is the Singleton bound for codes over R:

dH(C ) ≤ n − log|R| |C |+ 1. (4.1)

If C is a free code over R of length l , then the equation above
becomes

dH(C ) ≤ l − rank(C ) + 1.

If the equality holds in (4.1), then we say that C is a maximum
distance separable (MDS) code over R.

A free code of length l and rank m, which we shall call an [l ,m]
code (over R), has FRR generator matrices of size m × l .
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SFRR Matrices: Definitions

Let A be an FRR m × l matrix over R.

(i) If UA(m) = LA(1) is an [l ,m] MDS code, then we say that A
is a strongly full-row-rank (SFRR) matrix.

(ii) For t ≥ 2, if there is a sequence of indices
0 = i0 < i1 < · · · < it = m such that UA(ih), for
h = 0, 1, · · · , t, are MDS codes, then we say that A is an
(i1, · · · , it−1)-SFRR matrix. (When t = 1, A is just an SFRR
matrix.)

(iii) For t ≥ 2, if there is a sequence of indices
1 = i0 < i1 < · · · < it−1 < it = m + 1 such that LA(ih), for
h = 0, 1, · · · , t, are MDS codes, then we say that A is a
reversely (i1, · · · , it−1)-SFRR matrix. (When t = 1, A is just
an SFRR matrix.)
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SFRR Matrices: Some Properties

Suppose A ∈ Mm×l(R) is FRR. We have the following proposition.

Proposition 4.2

Let 0 = i0 < i1 < · · · < it = m. Assume that Ã ∈ Ml×l(R) is an
invertible matrix with A as the submatrix consisting of its first m
rows. Then the following are equivalent.

(i) A is an (i1, · · · , it−1)-SFRR matrix.

(ii) (Ã−1)T is a reversely (i1 + 1, · · · , it−1 + 1,m + 1)-SFRR
matrix (or, if m = l , a reversely (i1 + 1, · · · , it−1 + 1)-SFRR
matrix).
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SFRR Matrices: Some Properties–Continued

Corollary 4.1

Let A ∈ Mm×l(R) be FRR. Assume that Ã ∈ Ml×l(R) is an
invertible matrix that has A as the submatrix of its first m rows.
Then the following statements are equivalent:

(i) A is non-singular by columns.

(ii) A is a (1, 2, · · · ,m − 1)-SFRR matrix.

(iii) (Ã−1)T is a reversely (2, · · · ,m,m + 1)-SFRR matrix. (When
m = l , (Ã−1)T is a reversely (2, · · · ,m)-SFRR matrix.)

In particular, when m = l , the square matrix A is non-singular by
columns if and only if (A−1)T is reversely non-singular by columns.
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SFRR Matrices: An Example

Example 4.1

T =

1 0 1
0 1 1
1 1 1

, for the (a + x |b + x |a + b + x)-construction.

I T is a (2)-SFRR matrix.

I T is not NSC, since UT (1) is not MDS.

I T is also a reversely (3)-SFRR matrix.

I (T−1)T =

 0 −1 1
−1 0 1
1 1 −1

 is a reversely (3)-SFRR matrix.
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SFRR Matrices: Hamming Distance Lower Bound

Theorem 4.1

Let A ∈ Mm×l(R) be an (i1, · · · , it−1)-SFRR matrix, where
0 = i0 < i1 < · · · < it = m. Let C1, · · · ,Cm be codes over R of
length n and let C = [C1, · · · ,Cm]A. Then

dH(C ) ≥ min
{

(l − ih + 1)dH(Ckh) | h = 1, · · · , t, ih−1 < kh ≤ ih
}
.

(4.1U)
Furthermore, if the following three conditions are satisfied:

(E1) C1, · · · ,Cm are linear,

(E2) C1 = · · · = Ci1 , Ci1+1 = · · · = Ci2 , · · · , Cit−1+1 = · · · = Cit (= Cm),

(E3) Ci1 ⊇ Ci2 ⊇ · · · ⊇ Cit ,

then

dH(C ) = min
{

(l − ih + 1)dH(Cih) | h = 1, · · · , t
}
. (4.2U)
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SFRR Matrices: Sketch Proof of Theorem 4.1

Idea of proof (I) By Theorem 3.1 (3.2U), we have

dH(C ) ≥ min
{

dH(UA(k))dH(Ck) | 1 ≤ k ≤ m
}
.

ih−1 < k ≤ ih ⇒ UA(k) ⊆ UA(ih) + dH(UA(ih)) = l − ih + 1

dH(UA(k))dH(Ck) ≥ (l − ih + 1)dH(Ck), ih−1 < k ≤ ih.

(II) Set mh = ih − ih−1, for h = 1, · · · , t. We can show that there
is a block lower triangular matrix Q such that QA is a block upper
triangular matrix

QA =


Q1

∗ Q2

...
. . .

. . .

∗ · · · ∗ Qt

A =


Im1 ∗ · · · ∗ · · · ∗

Im2 · · · ∗ · · · ∗
. . .

...
...

...
Imt · · · ∗

 .
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SFRR Matrices: Sketch Proof-Continued

The matrix Qh is an invertible mh ×mh matrix for each
h = 1, · · · , t, and the ihth row of QA takes the form(

0, · · · , 0︸ ︷︷ ︸
ih−1

, 1, uih,ih+1, · · · , uih,l

)
with uih,j being a unit of R for every j = ih + 1, · · · , l .

Using (E1),(E2) and (E3), one can get

C = [C1, · · · ,Cm]A = ([C1, · · · ,Cm]Q−1)QA = [C1, · · · ,Cm]QA.

Inequality (4.1U) in Theorem 4.1 + Condition (E2) implies

dH(C ) ≥ min
{

(l − ih + 1)dH(Cih) | h = 1, · · · , t
}
.
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SFRR Matrices: Sketch Proof-Continued

Now it is enough to show, for each h with 1 ≤ h ≤ t, there is some
c ∈ C such that wH(c) = (l − ih + 1)dH(Cih).

Take cih = (c1, · · · , cn)T ∈ Cih such that wH(cih) = dH(Cih), and
take a codeword c ∈ C :

c = (0, · · · , 0, cih , 0, · · · , 0)(QA) =
(
0, · · · , 0︸ ︷︷ ︸

ih−1

, cih , uih,ih+1cih , · · · , uih,lcih
)
.

Then

wH(c) = wH(cih)+wH(uih,ih+1cih)+· · ·+wH(uih,lcih) = (l−ih+1)dH(Cih).
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SFRR Matrices: A Dual Version of Theorem 4.1

Theorem 4.2

Let A be a reversely (i1, · · · , it−1)-SFRR m × l matrix over R,
where 1 = i0 < i1 < · · · < it−1 < it = m + 1. Then

dH(C ) ≥ min
{

(l −m + ih)dH(Ckh) | h = 0, 1, · · · , t − 1, ih ≤ kh < ih+1

}
.

(4.2L)
With further conditions (E1∗)=(E1) and

(E2∗) (C1 =)Ci0 = · · · = Ci1−1, Ci1 = · · · = Ci2−1, · · · , Cit−1 = · · · = Cm,

(E3∗) Ci0 ⊆ Ci1 ⊆ · · · ⊆ Cit−1 ,

then

dH(C ) = min
{

(l −m + ih)dH(Cih) | h = 0, 1, · · · , t − 1
}
. (4.3L)

The proof for the dual version is the same as that for Theorem 4.1.
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SFRR Matrices: Duals

Let A ∈ Mm×l(R) be an (i1, · · · , it−1)-SFRR matrix, where R is a
finite Frobenius ring and 0 = i0 < i1 < · · · < it = m.

In the following, we estimate the minimum Hamming distance of
C⊥, where C = [C1, · · · ,Cm]A, C1, · · · ,Cm are codes of length n.

I Dual code of C :

C⊥ = [C⊥1 , · · · ,C⊥m , Rn, · · · ,Rn︸ ︷︷ ︸
l−m

](Ã−1)T , (4.4)

where Ã ∈ Ml×l(R) is an invertible matrix with A as the submatrix
consisting of its first m rows.

I If m < l , we have C⊥m+1 = · · · = C⊥l = Rn and set it+1 = l for
convenience.
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SFRR Matrices: Duals-Continued

Theorem 4.3

Let the notations be as above. Then

dH(C⊥) ≥ min
{

(ih+1)dH(C⊥kh) | h = 0, 1, · · · , t, ih+1 ≤ kh < ih+1+1
}
.

(4.5)
Furthermore, if the following three conditions are satisfied:

(E1) C1, · · · ,Cm are linear,

(E2) C1 = · · · = Ci1 , Ci1+1 = · · · = Ci2 , · · · , Cit−1+1 = · · · = Cit ,

(E3) Ci1 ⊇ Ci2 ⊇ · · · ⊇ Cit ,

then the equality holds in (4.5), i.e.,

dH(C⊥) = min
{

(ih + 1)dH(C⊥ih+1) | h = 0, 1, · · · , t
}
. (4.6)

If m < l , the terms in (4.5) for h = t are: (it + 1)dH(C⊥kt ) = m + 1.
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SFRR Matrices: Sketch Proof of Theorem 4.3

A is (i1, · · · , it−1)-SFRR, 0 = i0 < i1 < · · · < it = m, B̃ = Ã−1.

UÃ(ih) = UA(ih), MDS codes ⇔ LB̃T (ih + 1), MDS codes .

rank
(
LB̃T (ih + 1)

)
= l − ih ⇒ dH

(
LB̃T (ih + 1)

)
= ih + 1 , where

h = 0, 1, · · · , t. By Theorem 4.2 (see (4.2L)), we have that

dH(C⊥) ≥ min
{

(ih+1)dH(C⊥kh) | h = 0, 1, · · · , t, ih+1 ≤ kh < ih+1+1
}
.

If it = m < l , for any k with m < k ≤ l ,C⊥k = Rn, then

(it +1)dH(C⊥kt ) = m+1, it +1 = m+1 ≤ kt < l +1 = it+1+1.

Conditions (E1)-(E3) hold ⇒ Conditions (E1∗)-(E3∗) hold for

dual codes. By Theorem 4.2 (see (4.3L)), the equality (4.6) holds.
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SFRR Matrices: Special Case

Corollary 4.2

Let A ∈ Mm×l(R) be a (1, 2, · · · ,m − 1)-SFRR matrix, let
C1, · · · ,Cm be codes of length n, and C = [C1, · · · ,Cm]A. Then

dH(C ) ≥ min
{

l · dH(C1), (l − 1)dH(C2), · · · , (l −m + 1)dH(Cm)
}

and

dH(C⊥) ≥

{
min

{
1 · dH(C⊥1 ), · · · , m · dH(C⊥m ), m + 1

}
if m < l ,

min
{

1 · dH(C⊥1 ), · · · , m · dH(C⊥m )
}

if m = l .

Further, if C1, · · · ,Cm are linear and C1 ⊇ · · · ⊇ Cm, then
equalities are attained in all these inequalities.

Corollary 4.2 generalizes the results of Blakemore-Norton (2001)
and Van-Asch (2008) from two directions:

(I) fields (chain rings) ⇒ commutative rings;

(II) square ⇒ non-square.
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Two-way (m’) Matrices: Turyn’s Construction-Revisited

Turyn’s (a + x |b + x | a + b + x)-construction gives a MPC

C = [C1,C1,C2]T =

(a,b, x)

1 0 1
0 1 1
1 1 1

 ∣∣∣∣ a,b ∈ C1, x ∈ C2

.

The matrix T is (2)-SFRR and reversely (3)-SFRR, by Theorem 4.1
and Theorem 4.2, we obtain a lower bound for code C :

dH(C ) ≥ max
{

min{2dH(C1), dH(C2)}, min{dH(C1), 3dH(C2)}
}
.

Forney’s (1988) result for the Hamming distance bound:

min{dH(C1 ∩ C2), 2dH(C1), 3dH(C2)} ≥
dH(C ) ≥ min{dH(C1 ∩ C2), 2dH(C1), 3dH(C1 + C2)}.

Note that the two lower bounds cannot be compared directly, in
many cases, the latter is better then the former.
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Two-way (m’) Matrices: Definition

We will generalize Forney’s result to a more general case.

Let A ∈ Mm×l(R) be FRR. A is called a two-way (m′)-SFRR
matrix if there is an index m′ with 1 ≤ m′ < m such that A is both
an (m′)-SFRR matrix and a reversely (m′ + 1)-SFRR matrix.

Set m′ + m′′ = m, any m × l matrix A can be written as

A =

(
A′

A′′

)
, where A′ is an m′ × l matrix consisting of the first

m′ rows of A while A′′ is an m′′ × l matrix consisting of the last
m′′ rows of A.
With this partitioned form, A is a two-way (m′)-SFRR matrix if
and only if A′, A′′ and A are all SFRR matrices.
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Two-way (m’) Matrices: Bounds for Codes

Let A ∈ Mm×l(R), let m′ + m′′ = m with m′ ≥ m′′ ≥ 1, and let C ′

and C ′′ be linear codes over R of length n. Consider the matrix
product code

C = [ C ′, · · · ,C ′︸ ︷︷ ︸
m′

, C ′′, · · · ,C ′′︸ ︷︷ ︸
m′′

]A. (5.1)

If A is a two-way (m′)-SFRR matrix, then from (4.1U) and (4.2L)
of Theorem 4.1 and Theorem 4.2, we have a lower bound for
dH(C ) as follows:

dH(C ) ≥ max

{
min{(l −m′ + 1)dH(C ′), (l −m + 1)dH(C ′′)},
min{(l −m + 1)dH(C ′), (l −m′′ + 1)dH(C ′′)}

}
.

(5.2)
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Two-way (m’) Matrices: Bounds for Codes

Let C∩ = C ′ ∩ C ′′, we have more bounds for dH(C ) as follows.

Theorem 5.1

Let the notations be as in (5.1). If A is a two-way (m′)-SFRR
matrix, then

dH(C ) ≥ min
{

(l−m′+1)dH(C ′), (l−m′′+1)dH(C ′+C ′′), (l−m+1)dH(C∩)
}

(5.3)
and

dH(C ) ≤ min
{

(l−m′+1)dH(C ′), (l−m′′+1)dH(C ′′), (l−m+1)dH(C∩)
}
.

(5.4)

Note that the two lower bounds in (5.2) and in (5.3) cannot be
compared directly in general, since dH(C ′′) in (5.2) and
(l −m′′ + 1)dH(C ′ + C ′′) in (5.3) are not comparable in general.
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Two-way (m’) Matrices: Idea of Proof
Idea of proof: We first consider the upper bound (5.4).

C = [C ′, · · · ,C ′, C ′′, · · · ,C ′′]A ⊇ [C ′, · · · ,C ′, C∩, · · · ,C∩]A ⇒

dH(C ) ≤ min
{

(l −m′ + 1)dH(C ′), (l −m + 1)dH(C∩)
}
. (5.5)

C = [C ′, · · · ,C ′,C ′′, · · · ,C ′′]A ⊇ [C∩, · · · ,C∩,C ′′, · · · ,C ′′]A ⇒

dH

(
C
)
≤ min

{
(l −m′′ + 1)dH(C ′′), (l −m + 1)dH(C∩)

}
. (5.6)

For the lower bound (5.3). We partition A as A =

(
A′

A′′

)
, where

A′ (A′′) is the m′ × l (m′′ × l) matrix consisting of the first m′ (the
last m′′) rows of A. By computing the Hamming weight of nonzero
codeword c = (c′1, · · · , c′m′)A′ + (c′′1, · · · , c′′m′′)A′′ of C , we can
obtain (5.3).
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Two-way (m’) Matrices: Turyn’s Construction-Revisted

Take R to be the binary field and T =

1 0 1
0 1 1
1 1 1

. Then T is a

two-way (2)-SFRR matrix. The bounds in (5.3) and (5.4) of
Theorem 5.1 give the estimation on the minimum distance of C :

min{dH(C ′ ∩ C ′′), 2dH(C ′), 3dH(C ′′)} ≥
dH(C ) ≥ min{dH(C ′ ∩ C ′′), 2dH(C ′), 3dH(C ′ + C ′′)}.

Another lower bound is given by (5.2):

dH(C ) ≥ max
{

min{2dH(C ′), dH(C ′′)}, min{dH(C ′), 3dH(C ′′)}
}
.
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Two-way Matrices: An Example, where R is a binary field

Table 5.1
Code generator matrix Code generator matrix

C1: [4,1,4] (1,1,1,1) C2 ∩ C1: [4,0,0]

C2: [4,2,2]

(
1 0 1 0
0 1 1 1

)
C2 + C1: [4,3,1]

1 0 1 0
0 1 1 1
0 0 1 0


C3: [4,2,2]

(
1 0 1 0
0 1 0 1

)
C3 ∩ C ′3: [4,1,4] (1,1,1,1)

C ′3: [4,2,2]

(
1 1 0 0
0 0 1 1

)
C3 + C ′3: [4,3,2]

1 0 1 0
0 1 0 1
0 0 1 1



Table 5.2
Code C parameters argument for dH(C )

[C2,C2,C1]T [12, 5, 4] dH(C ) ≥ 4 (by (5.2)), dH(C ) ≥ 3 (by (5.3))
[C3,C3,C ′3]T [12, 6, 4] dH(C ) ≥ 4 (by (5.3)), dH(C ) ≥ 2 (by (5.2))
[C3,C3,C1]T [12, 5, 4] by (4.2U),(note that C3 ⊇ C1)
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